How to create a Django project
pip install django
django-admin startproject myproject
pip install django
django-admin startproject myproject
npm install csstype
import type * as CSS from 'csstype'; const style: CSS.Properties = { colour: 'white', // Type error on property textAlign: 'middle', // Type error on value };
References
https://www.npmjs.com/package/csstype
python manage.py migrate
python manage.py createsuperuser
References
https://stackoverflow.com/questions/39696310/django-contrib-admin-default-admin-and-password
download the latest installer from the MSYS2 page
In the terminal, install the MinGW-w64 toolchain by running the following command:
pacman -S --needed base-devel mingw-w64-ucrt-x86_64-toolchain
Add the path to your MinGW-w64 bin
folder to the Windows PATH
environment
C:\msys64\ucrt64\bin
References
https://code.visualstudio.com/docs/cpp/config-mingw
Create the C function:
First, create a file named add.c
with the following content:
// add.c #include <stdio.h> int add(int a, int b) { return a + b; }
Compile the C function:
Next, you need to compile the C code into a shared library. If you’re on Linux or macOS, you can use gcc
:
gcc -shared -o libadd.so -fPIC add.c
On Windows, you might use gcc
from MinGW:
gcc -shared -o add.dll -Wl,--out-implib,libadd.a add.c
Call the C function from Python:
Create a Python script named call_add.py
with the following content:
import ctypes # Load the shared library into ctypes if __name__ == "__main__": lib = ctypes.CDLL('./libadd.so') # Use 'add.dll' on Windows # Define the argument and return types of the C function lib.add.argtypes = [ctypes.c_int, ctypes.c_int] lib.add.restype = ctypes.c_int # Call the C function result = lib.add(3, 5) print(f'The result of adding 3 and 5 is: {result}')
Defining Multi-Column Indexes Using ORM Declarative Mapping
from sqlalchemy import create_engine, Column, Integer, String, Index from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker engine = create_engine('postgresql://username:password@localhost/mydatabase') Base = declarative_base() class Employee(Base): __tablename__ = 'employees' id = Column(Integer, primary_key=True) last_name = Column(String) first_name = Column(String) department_id = Column(Integer) __table_args__ = ( Index('idx_employees_last_first', 'last_name', 'first_name'), ) Base.metadata.create_all(engine)
Creating Indexes After Table Definition
from sqlalchemy import create_engine, MetaData, Table, Index engine = create_engine('postgresql://username:password@localhost/mydatabase') metadata = MetaData(bind=engine) # Reflect the existing table employees = Table('employees', metadata, autoload_with=engine) # Create the index index = Index('idx_employees_last_first', employees.c.last_name, employees.c.first_name) index.create(engine)
ls /sys/class/power_supply/
ls /sys/class/power_supply/BAT0
sudo sh -c "echo 60 > /sys/class/power_supply/BAT0/charge_control_end_threshold"
cat /sys/class/power_supply/BAT0/status
Create Battery Charge Threshold Service
sudo nano /etc/systemd/system/battery-charge-end-threshold.service
[Unit] Description=Set Battery Charge Maximum Limit After=multi-user.target StartLimitBurst=0 [Service] Type=oneshot Restart=on-failure ExecStart=/bin/bash -c 'echo 60 > /sys/class/power_supply/BAT0/charge_control_end_threshold' [Install] WantedBy=multi-user.target
sudo systemctl enable battery-charge-end-threshold.service
sudo systemctl daemon-reload
sudo systemctl start battery-charge-end-threshold.service
References
https://ubuntuhandbook.org/index.php/2024/02/limit-battery-charge-ubuntu/
In Python, variables can have type annotations to indicate the type of value they are expected to hold. This is particularly useful for static type checkers and for improving code readability. When defining a variable with a type annotation, you explicitly specify the type:
from typing import Type class A: ... tp: Type[A] = A
In this example:
tp
is a variable with a type annotation.Type[A]
indicates that tp
should hold a type object corresponding to class A
.A type alias is a way to give a new name to an existing type. This can make your code more readable, especially when dealing with complex types. Type aliases are defined without an explicit type annotation at the top level of a module:
class A: ... Alias = A
Here:
Alias
is a type alias for class A
.A
.Using type aliases can simplify type annotations and make your code more descriptive.
PEP 613 introduced the TypeAlias
feature to explicitly define type aliases. This can be especially useful in larger projects or when defining type aliases in class bodies or functions. To use TypeAlias
, import it from the typing
module (or typing_extensions
for Python 3.9 and earlier):
from typing import TypeAlias # "from typing_extensions" in Python 3.9 and earlier class A: ... Alias: TypeAlias = A
Using TypeAlias
makes it clear that Alias
is intended to be a type alias, not a variable. This explicitness enhances code readability and maintainability.
useClient
and useServer
are React hooks introduced in Next.js to optimize and clarify the execution context of components or logic within an application. These hooks are part of Next.js’s ongoing enhancements to support React Server Components, enabling developers to specify more clearly whether a component should run on the client-side or server-side.
useServer
The useServer
hook is a clear indication that the enclosed code or component is intended to run only on the server. This is particularly useful for operations that are sensitive or need direct access to server-side resources such as databases or environment variables that should not be exposed to the client. Here’s a quick example:
'use server' function ServerComponent() { const data = useServer(() => { // Fetch data or perform operations that are server-only return fetchSecretData(); }); return <div>Secret Data: {data}</div>; }
import { useServer } from 'next/server'; function ServerComponent() { const serverData = useServer(() => { // Simulate fetching server-only data const data = fetchServerData(); return data; }); return <div>Loaded server-only data: {serverData}</div>; } function fetchServerData() { // Pretend to fetch data that should not be exposed to the client return "Secret server info"; }
In this example, fetchSecretData
is a function that you wouldn’t want to expose to the client-side due to security concerns or computational reasons. By using useServer
, you ensure that this function only runs on the server.
useClient
Conversely, useClient
is used to denote that the enclosed code or component should run only on the client-side. This is suitable for interactions that depend solely on the browser’s capabilities, such as DOM manipulations or client-side state handling that doesn’t need to pre-render on the server. Here’s how you might use it:
'use client' function ClientComponent() { const [count, setCount] = useClient(() => { // Only run this hook in the client-side environment const [localCount, setLocalCount] = useState(0); return [localCount, setLocalCount]; }); return ( <div> <button onClick={() => setCount(count + 1)}>Increment</button> Count: {count} </div> ); }
import { useClient } from 'next/client'; import { useState } from 'react'; function ClientComponent() { const [count, setCount] = useClient(() => { // Initialize state only on the client const [localCount, setLocalCount] = useState(0); return [localCount, setLocalCount]; }); // Button click handler for incrementing the count function handleClick() { setCount(count + 1); } return ( <div> <button onClick={handleClick}>Increment</button> Count: {count} </div> ); }
In this example, the state management for count
is purely client-side, which makes useClient
ideal for encapsulating client-specific logic.
useServer
vs. useClient
Deciding whether to use useServer
or useClient
boils down to understanding where your code needs to execute for optimal performance and security. Here are some guidelines:
useServer
if:
useClient
if:
To follow along, you will need:
First, let’s set up the Celery worker. On the worker machine, create a file named tasks.py
:
from celery import Celery app = Celery("tasks", broker='amqp://username:password@localhost', backend='redis://localhost:6379/0') @app.task(name='celery_project.tasks.add') def add(x, y): return x + y
Here, we define a simple task named add
that takes two arguments and returns their sum. Adjust the broker
and backend
URLs to point to your actual RabbitMQ and Redis services.
Run the following command on the worker machine to start the Celery worker:
.venv\Scripts\python.exe -m celery -A tasks worker --loglevel=info -E --pool=solo
This command starts a Celery worker that listens for tasks to execute.
On the client machine, you don’t need the full task definitions—only the Celery app configuration and the task signatures. Create a file named main.py
:
from celery import Celery app = Celery("tasks", broker='amqp://username:password@localhost', backend='redis://localhost:6379/0') result = app.send_task('celery_project.tasks.add', args=[4, 4]) print(result.get())
Here, send_task
is used to dispatch the task. It requires the name of the task (which must match the name given in the worker’s task decorator) and the arguments for the task.
Run the main.py
script on the client machine:
python main.py
This script sends the add
task to the worker machine via the message broker, and then fetches the result using result.get()
.
Or Use Minimal Task Definitions approach
On the client side, you only need a minimal definition of the tasks to send them. You can redefine the tasks in a simple module that just includes the task names, without their implementations:
client_tasks.py:
from celery import Celery app = Celery('client_tasks', broker='pyamqp://guest@your_broker_ip//') @app.task(name='your_module_name.tasks.add') def add(x, y): pass # Implementation is not needed on the client
Then on the client:
from client_tasks import add result = add.delay(4, 4) print(result.get(timeout=10))